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Recently, it has been shown that the higher-oigandA, scenarios of the mode-coupling theqiCT)
are in many cases capable of providing a good description of the complicated dielectric spectra often encoun-
tered in polymeric systems. In this paper, more data from dielectric measurements @thytéye tereph-
thalatg, poly(vinylidene fluoride, Nylon-66, polychlorotrifluoroethylene(PCTFB, and the polymer gel sys-
tem polyacrylonitrile)—ethylene carbonate—propylene carbonate are evaluated withiy,teeenario of the
MCT. For all these systems, very good agreement is found between the theoretical and experimental spectra.
The data analysis is demonstrated to be facilitated considerably by plotting the data in the complex plane
whereby the elliptic functions derived from the theory for the frequency-dependent dielectric function can be
replaced by polynomials. For PCTFE, the scaling behavior predicted by the MCT could be verified and the
temperature dependences of the extracted scaling parameters were found to be consistent with theory.
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[. INTRODUCTION permits linear least squares curve fitting to be utilized. For
this purpose, the following polymeric systems were chosen:
Dielectric data obtained from measurements on polymergoly(ethylene terephthalate¢PET), poly(chlorotrifluoroeth-
often show very complex relaxation patterns. The usual waylene (PCTFB, poly(vinylidene fluoridg¢ (PVDF), poly-
to analyze such data has to date been to use various serfifexamethylene adipamibéNylon-66), and the polymer gel
empirical expressions, for instance, the Cole-(fdle Cole- ~ System polyacrylonitrile)—ethylene  carbonate—propylene
Davidson[2,3], or Havriliak-Negami[4] functions. These CarbonatdPAN-EC-PQ. The paper is organized as follows.
expressions can account for features such as broadened dRgSec. Il a brief introduction to dielectric data analysis is

asymmetric loss peaks, typical for many simple g|asspresent_ed, followed by a description of the mode-coupling
theory in Sec. lll, where all relevant formulas and expres-

forming materials. In amorphous and semicrystalline poly-". roduced. Results of th | il it
mers, however, the frequency-dependent imaginary part oflons are Introduced. Results ot the polynomial curve hits are

. . . " shown in Sec. IV. In order to demonstrate the validity of the
the dielectric function €”(v) often features frequency- o . . '
independent regions, linear regions insjy(horizontal in- polynomlal'ﬂt's, the cﬁelectnq spectra are also fitted tQ the

’ “usual” elliptic functions using the parameters obtained

flection points, or double minimgb—186]. In, these cases, the from the polynomial fits. Finally, the paper is concluded in
above formulas, in general, do not provide an adequate de&so. \/ with a discussion of the results.

scription of the data. Rather recently, however, this behavior

has been demonstrated to be described astonishingly well Il. PRESENTATION OF DIELECTRIC DATA
using the higher-order scenarios within the mode-coupling i i i i
theory (MCT) of the liquid-glass transitiofil1—17. How- The data obtained from a dielectric experiment can be

c;&presented in a number of ways. Today, it is most common

correspondence with measured data, it has, due to the multe plot the real and imaginary parts of the dielectric function

dimensional nature of the problem, not yet been possible tS(Vl): er(r']’)_if t?\ as Tepatrate f;mctié)r)s 3: the f:equlen(_:lyl/
thoroughly test the scaling relations predicted by the theoryf" h such a plot e relaxations found in the materaj wi
A10W up as peaks in the imaginary pelft accompanied by

Therefore, one purpose of this paper is to present more dat . ,
supporting the tr?eorr)y, which als% iﬁustratesethe scaling propfJl step in the real pa#’. Anothe/r, methOd to present the data
erties. Furthermore, applying this theory to the analysis 015, the Cole-Cole plof1]. Here,e” is .plotted as a.functlon of
frequency-domain data involves the use of elliptic functions® in a complex-plane representat!on._ln the §|mplest thepry
that cannot be calculated analytically. The “catastrophic” 18,19, where the relaxation fu_nctlon in the time domain is
behavior of these functions, as well as their strong diver/Modeled 7lby an  exponential decay and(v)=(1
gence at low and high frequencies, makes it quite difficult to 12mv7) *, such a plot will give rise to a semicircle cen-
utilize automated curve fitting procedures. Due to this and t&ered on the real axis. In reality, and especially in the case of

the large amount of data needed, analysis of data using tf'YMers, this is seldom seen but the semicircle appears dis-

higher-order scenarios of the MCT has thus far been a quit@rte(j and is often not visible in its entirety.

cumbersome and tedious affair. Another purpose of this pa-
per is therefore to present a simpler way to analyze dielectric
data on polymers within the framework of the MCT, which  During recent years, the mode-coupling thep2p] has

allows for the use of simple polynomial functions and thusemerged as a very promising theoretical framework for de-

ever, even though the theoretical expressions do show go

IIl. MODE-COUPLING THEORY
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=S(f(y)) 4

scribing the dynamics of glass-forming systems. Today,

many experimental studies have confirmed the predictions of (K’
the theory for a large number of materidl]. A central

concept in the MCT is that of glass t_ransition singularities.,herek= 3 andS,(x) is a polynomial given by
Due to the fact that the MCT equations cannot be solved

exactly, approximations are employed, either through the use

of so-called schematic models or by asymptotic expansions. S (x)=
In the present case, the latter method has been adopted, im- (k—2)?
plying that the equations presented below are only applicable ) ) ]
close to the relevant singularity and in an intermediate freThe solutions to these equations are expressed in terms of
quency range called the-relaxation region, located between €lliptic functions. In case of thé; singularity, for whichk -

the structurak-relaxation and higher-frequency microscopic =3, the functionf(y) is given by the Weierstrass elliptic
processes. The theory predicts a critical temperafiye ~ functionp(y;gz,9s) [11,17, which can be calculated via the
which represents a transition from liquidlike dynamical be-€lliptic integral

havior for T>T, to solidlike behavior forT=<T.. Because

of the asymptotic nature of the solutions to the MCT equa- [~ ds

tions, the abovementioned singularities manifest themselves y= L, V4= g,5—gs ®)

. . . . 25— 03

in a number of different scenarios and are classified accord-

ing to results from catastrophe the¢@2,23. In the simplest  There are thus two shape parametgssandgs, in this case.
case, theA, scenario, the imaginary part of the dielectric The next higher-order scenario, th, scenario[12] has
function is in thEﬂ-relaxaﬂon region abOVé—c given by a three Shape parameteﬁ” O3, andg41 and the functiorf(y)
minimum centered atuyin,emin), Which is formed by two  can be calculated through
power laws according to
v a
b( ) +a
VYmin

and whose exponengsand — b are related to each other and In the frequency domain, all these higher-order scenarios

to a material-dependent exponent paramgtaccording to provide th.eir. own very specific signature;. For i_nstance, the
Az scenario introduces a horizontal inflection pointlt{v),

I'’(1—a) T?1+b) while the A, scenario in addition exhibits, e.g., double
= T(1-2a) :F(1+ 2b)’ ) minima and regions linear in ). For all higher-order sin-
gularitiesA,, k=3, lower-order singularities appear as spe-
whereI'(x) is the gamma function. For temperatures belowcial limits, determined by the number of degenerate roots of
T., the power law with exponent b is replaced by a white- the polynomialS,(x). The A, singularities are encountered

2

X<—gox* 2= —g_ix—gk. (5

_fx ds
(1) Y ts*—g,5%—gss— 04

"
€min

a+b

()

6”(1/):

b
Vmin)

noise spectrume”(v) o vl, when two degenerate roots are found, while the sefpf
singularities is found for all cases where the polynomial
A. Higher-order scenarios and elliptic functions S«(X) has three coalescent roots and so on.

For many polymers, thé\, scenario cannot adequately
explain the very complex relaxation patterns encountered
sometimes. Furthermore, the MCT predicts fhescenario By considering the control parametery,, /
to break down when approaches unity. When this happens,=2,3, ... k, to be coordinates in ak( 1)-dimensional
higher-order scenarios must be used. For these, the genesgace, each measured spectrum will correspond to a point in
expressions for the real and imaginary parts of the dielectrithis space. When varying physical parameters such as, e.g.,

B. Parameter spaces

function can be written in leading order as temperature, pressure, or composition, the set of points thus
, acquired will form a path. This path may cross critical lines
€' (v)=f—e&f(y;92.93, .- .90, (33 or surfaces containing th&, singularities. If that happens, a

transition is predicted to take place between a liquid state
(3b) and an ideal glass statthe transition takes place at the tem-
peratureT=T.) or, as could be the case for thf, and
o higher scenarios, between two ideal glass states. Since the set
W,here y=—In(2mty, f. and e are fitting parameters, o o, singularities is determined by establishing for which
f’(y)=df/dy, andt, is a characteristic microscopic time- \5jues of the parametegs the polynomialS(x) has roots

scale[11,12. The parameterg, (/=2,3,...) aremath-  f wofold degeneracy22,23, the critical lines or surfaces
ematical control parameters and specify the distance to thgy pe determined through the identities

relevant singularity in such a way that the singularity is

ar
e”(v)=—§ecf’(y:gz,ga, cen80),

reached whem,=g5="--=g,=0. These parameters con- Sy(X) =4x3—gx—gz=(X— X0’3)2(X_ X;13=0 (8a)
trol the shape of the dielectric function. The functity) is
determined from the differential equati¢h7] for the A; scenario and
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S4(X) = X* = goX? — 93X~ gs= (X~ Xg,0) (X~ X1, (X—X2.9)
=0 (8b)

for the A, scenario. Herejx, } are the roots of the polyno-
mial S.(x). By identification, the critical linéin the A; case

or surface(for the A, scenarig are then given by the para-

metric representations

9= 12, (93
gs=—8%; (9b)
for the A; case, where;e[0,0) and
g2=(Xo+X1)*+2xg, (109
3= —2Xo(Xg+X1)?, (10b)
9a=X5X1(2X0+ X4) (109
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boon el Y 172 14
€' (v)=Tf.—c,f y—,i6p ,+897, =3/, (14a
4

€'(v)=—Ccyf (yl +6p'% +8gY = 3) (14b)
4

in the A, scenario. The parametersp, andq will then be
given by

3
92
=|—F, 15
2793 (159
2
Jd>
p= 129, (15b
2794
gq= 933 . (150
40963

for the A, scenario. These last three relations may be more

conveniently expressed as

(100
94=X5(95— 3%5) (1089

for go e (—%,) andxoe{(—=,~0,/2],[ g./6,%)}, for

g3= —2Xo(g2— ZXg),

There will thus exist lines in thek( 1)-dimensional pa-
rameter space along which the corresponding spectra are in-
variant. The parameters above have been defined sa that
=1 is the equation of thé, line in the A; scenario, while
p=q=1 corresponds to th&; line in the three-dimensional
A, parameter space. This scaling property leads to the pre-
diction that the parameters in Eq43) and(14) should have

9,=0 andxge (—,~) otherwise. In the same way, the set the following temperature dependences:

of Az singularities will in theA, case be given by a line in

the (9,,03,94) parameter space described by the following Cé To—T|Y3
parametric functions: — o , (163
€c To
92=6X3, (113
c; |To—T[¥
gs=—8Xg, (11b Pl o (16b)
94:3)(31 (119 1 |T,—T|Y6
— , (160
wherexye[0,%). Ye | To
C. Scaling relations %m To—T|¥ (173
The elliptic functionsf(y;d,,93, - -.,0x) are homoge- €c To '
neous, i.e., they can be rescaled accordinplfig12
¢y |To—T|Y?
f(Yi02,02, - - 90 =S (yS:028 208 ™", ... g5, & T | 79
€c 0
(12)
wheren=2/(k—2). As a consequence, the expressions for ioc To—T|™ 170
the dielectric function in theA; and A, scenarios can, by Y4 To : ©

letting s=g3/4|*® in the A; case[11] and s=|g,/3|** for
the A, singularity[16,27], alternatively be written as

y r 1/3
"(v)=f.—cip| ;=12 - ,:4), 13
€ =fcip|y- 4) (133
y r 1/3
"(py=—cClp'|l —:;*+12 —| ,*4 13b

for the A; singularity[11] and as

Ty is here the temperature at which the relevant singularity is
reached. Thus for spectra having simitaralues(for the A;

case or p, q values(for the A, case, the extracted scaling
parameters should show the above temperature dependence.
This provides for a critical testing of the theory. In many
cases, the parameteg only shows a weak temperature de-
pendence and is therefore usually absorbed by the parameters
¢’ andc”. However, when performing a scaling analysis on
polymers with, e.g., varying degree of crystallinity where the
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intensities of the spectra vary to a much greater extent be-
tween samples, the influence ef needs to be taken into
account.

D. Polynomial representation ofe’ and €”

Due to the nature of the above described elliptic func-
tions, automatic curve fitting procedures are very difficult to
implement for the higher-order MCT scenarios. A different
route can be taken by observing thet is related to the
derivative of the functiorf(y) [13]. From Egs.(3) and (4)
one then finds that” is related toe’ through the polynomial
expression

k
€'’= Z aje’! (18)
=)
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FIG. 1. Cut of theA, parameter space with the plage=1, see

text. Black diamonds, PAN-EC-PC; pluses, PET,; triangles, PCTFE;
circles, Nylon-66; squares, PVDF. Crosses mark the spectra that are
plotted in the following figures. The dashed circle shows the loca-

tion of the A; point, located at ds,g.) = (—(2/3)¥21/12 and the

from which the various parameters from E®) can be ex-
tracted according to
4

dashed line contains all parameter points that give rise to a horizon-
tal inflection point in the polynomiab,(x). The numbers 0, 2, and

indicate the number of real roots of the polynom&l in the

relevant region.

not necessarily carried over to the elliptic functions describ-

ing the real and imaginary parts, respectively. One of the
purposes of this paper is to investigate in more detail the

correspondence between the polynomial fits on the one hand

and the elliptic functions on the other.

It should be noted that theg parameters cannot be chosen

arbitrarily since, e.g., a negative value of the paramaier

yields imaginary coefficientg. andgs in the A, case.

According to Eq.(12), the scaling relation for th&(x)

polynomial is given by

Su(X:92,093, + - -Gk

=515, (xs M g,s 2

3n

Ngss " L0,

9kS
(21

or theA, scenario, which is the primary scenario of interest

in the present work, the master functions along scaling lines
given by constanp and g values do consequently have the

following form:

T 19
€= a3 ’ ( a
f=o 2 19b
€ 3a3 ; ( )
4a%—12aa,
-, (199
92 3.4
36a,a,a;— 8a3— 1083933
= 19
O3 2776 (199
for the A; case k=3) and
aa
GcZZ}l/z, (209
F
f=— 3 200
€ 4a4 ’ ( )
3a3—8aya, (200
= v
gz 2a4’772
8a,a3+a3—4ayaza, (209
g = L
3 ai/zﬂ_s
64a,a;a2— 16a,a3a,— 256a,a5 + 3ag
94= (209

16a37*

for the A, singularity k=4). In this way, all parameters
except the timescaly can be determined by fitting a poly-
nomial of orderk to a plot of €”? versuse'. It is however

important to realize that the accuracy of the MCT expre

sions for the dielectric function depends on the distance tause of Eq.(21) and by choosings=|g,

6//

ch

’
e €

AL
4

’
4

’
fe_e €

7
) T 6pll2< f

IV. RESULTS

!

Ca
(22

The part of theA, parameter space relevant for the

present case is shown in Fig. 1. The points represent the
s positions of the different fitted spectra within this space. Be-

|¥2 so thatgs

the relevant singularity. This means that even though a very:g3/|g,|*? andg,=g4/|g,|?, this three-dimensional space
good fit is obtained with the polynomial expression, this isis completely characterized by the three cuts with the planes

011802-
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MODE-COUPLING THEORY AND POLYNOMIAL FITTING . ..

g,=-1, g,=0, andg,=1. Since all theg, parameters ob-
tained from the fits were positive, only the cut with the

=1 plane needs to be considered in the present case. The full
lines are the sets of al\, singularities, calculated according

0.5

04
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to Egs.(10d and (10e, and do thus represent crossovers im 03
between different ideal glass states and between liquid and 02} W
ideal glass states. The line starting from thg point and R\ :
extending downwards and to the right is divided into two 0.1] R il
parts. The upper part, between tAg point and the corner i .
represents a glass-glass transition. The lower line represents 03.5 20 25 ! 50 555 6.0

a liquid-glass transition. The other line, starting from the
corner and extending towards the lower left, represents the
transition surface between liquid and ideal glass states. The
dotted part of the critical surface, drawn to show the full
“swallowtail” shape, represents an unphysical situation
[12]. The dashed straight line that extends from Ahgpoint

and downwards contains the set of parameter points that pro-
duce a horizontal inflection point in the polynom&l. Some
parameter points in the figure are marked with a cross. These
represent typical results and the spectra corresponding to
these points are plotted in the following figures.

PET is a polymer with a dielectric spectrum that shows an
almostA,-like behavior in the amorphous state close to the
critical temperaturel .. Discrepancies between the sce-
nario and experimental data for this polymer have however
been found[14,24 and the reason for this deviation was
explained by taking thés singularity into accounfl4]. Di-
electric data on PET with varying degree of crystallinity
were also evaluated within th&; scenario with partial suc-
cess[15]. These data have now been reevaluated within the
A, scenario, the result of which is shown in Fig. 2 for a few

3 /”
representative spectra. The complex-plane analysis produces ol [ i . . .
excellent fits that are easily carried over to the frequency- 100 100 100 100 10 100 16°
plane plots. It should be pointed out that for all the evaluated v[Hz]

data, except when otherwise noted, the fitting parameters ) ) ) ] )
were obtained from fits using expressias), (19), and(20) FIG. .2. MCT fits to the dle!ectrlc function for. PET. Full lines
and these parameters were then used to generate the ellipff€ /¢ fits and dashed lines fits to thk, scenario, see texta)
functions in Eqs(3). These plots also illustrate the fact that “OMPlex-plane plot(b) Real and(c) imaginary part of the dielec-
. : . tric function as functions of frequenay Circles, 9% crystallinity at
close to theA; points, as seen in Fig. 1, th&; and A, o i - -
. . 90 °C; diamonds, 26% crystallinity at 110 °C; squares, 31% crys-
scenarios are equivalent. However, further away fromAthe allinitv at 115 °C. In Fig. 1. th dinated{ 5.} of th
points deviations start to appear and &gescenario provides allinity a N '_%' » the coordinategd,g,) of these spec-
e . tra are (-0.39,6.%107%), (—0.15~0.44), and {0.55~0.91)
a much better description of the data. In contrast withAhe :
scenario, which exclusively deals with the minimum be_and theg, parameters are 0.22, 0.047, and 0.022, respectively.
tween two peaks, the higher-order scenarios are also able to
reproduce a large part of the peak. This is due to the fact . _ _
that the time-domain relaxation function for the higher-ordermaking up the left part of the “swallowtail” shape. This
scenarios is more slowly varying compared to thesce-  implies, as previously discussed by Fuetsal.[26], a two-
nario and a larger part of the peak will therefore be repro- Step glass transition scenario. For dielectric measurements,
duced in these cases. Of particular interest is the fact that tH&is prediction might be difficult to corroborate, since for low
a peak of the PET spectrum is not fitted to the low- enough frequencies’ will start to increase due to electrode
frequency wing of theA, fitting curve but rather to the Polarization and dc conductivity. The low-frequency peak, or
intermediate-frequency peak situated between the twe' Peak, is actually found in dielectric spectra for, e.g., poly-
minima as found in the liquid region beneath the corner in(Propylene glycol[25]. Using a schematic model, it has pre-
Fig. 1. This gives the result, as can be seen in Fig. 2, tha¢iously been shown by Fuchet al. [26] that this double-
another peak is predicted for frequencies belowdheeak. —Peak scenario is indeed a generic feature of the MCT and
On Crossing the bifurcation Surface extending from the Cor.appears Close to the Se|f-lnterseCtI0n Of the Cr|t|Ca| Surfa(?e.
ner towards the lower left in Fig. 1, this low-frequency peak Thus, spectra located below and close to the corner with
will disappear. Thex peak will however remain intact and coordinates @3,94) =(0,—1/4) in Fig. 1 will display such a
will instead disappear when crossing the critical surfacedouble peak, or more accurately, a double minimum, since
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FIG. 4. MCT fits to the dielectric function of PVDF. Full lines
areA, fits, see text(a) Complex-plane plot(b) real, and(c) imagi-
nary part of the dielectric function plotted as functions of frequency
v. Circles, 0 °C; squares, 10 °C. In Fig. 1, the coordinatsd,)
of these spectra are (0.083).31) and (0.065;0.30) and they,
parameters are 0.12 and 0.14, respectively.

FIG. 3. MCT fits to the dielectric function for Nylon-66. Full
lines areA, fits, see text(a) Complex-plane plot(b) real, and(c)
imaginary part of the dielectric function plotted as functions of
frequencyv. Squares, 47 °C; circles, 98 °C. In Fig. 1, the coordi-
nates §s,94) of these spectra are (0.250.44) and (0.1%; 0.34)
and theg, parameters are 0.082 and 0.12, respectively.

frequency side of a lower-frequency peak. By extrapolating
only the high-frequency part of the lowest-frequency peak ighe data in Fig. @) with a few points at low values of’, a

visible due to the asymptotic nature of tAg scenario. successful polynomial fit was also accomplished for this
Figure 3 shows the results from fitting tiAg functionsto  case.
dielectric data taken from measurements on Nylor|-BA8. Like Nylon-66, dielectric data for PVDF also show typi-

Here theA, fits also produce very good results. However, forcal A, behavior with a double minimum. The data shown in
the low temperature sample the complex-plane fit produceéig. 4 were taken from the literatuf@8]. €' (v) was not
parameter values that corresponded to a point on the riglgvailable from that report and was therefore calculated by
side of the rightmost critical line in Fig. 1. Attempting to performing a numerical Kramers-Kronig transformation ac-
produce an elliptic function that fitted the spectrum for thecording to a method developed by LovEl9]. Apart from a
parameter values obtained from the polynomial fits did therewide frequency range, such an analysis requires that the
fore not succeed in this case. This is due to the fact that thenealue ofe’ at infinitely high frequenciess.. , be determined.

are not enough data on the high-frequency side of the spe&ince this value is very dependent upon the degree of crys-
trum that gives, as a result, a polynomial &\ that will tallinity and thermal history of the sample, a correct assess-
become negative and thereby exhibit two real roots. By vi-ment of this parameter could not be made, and a reasonable
sual inspection of the experimental spectra, one can howevestimate was determined to lee=5 [30—37. Sincee., is
immediately conclude that this spectrum belongs to that pafust an additive constant, it will only affect the value fof

of the parameter space where the polynondiglx) has no  when performing, fits. The lowest temperature sample was
real roots, since spectra in this region show an intermediatelso in this case giving problems for the complex plane fits
frequency peak or inflection point as well as the high-and, just as for the nylon sample, this was remedied by ex-
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trapolating the spectrum somewhat at both high and low val-
ues ofe’. The fits could have been improved for high fre-
guencies if more data were available. In order to perform a
successful fit, it is crucial to have measured the entire mini-
mum in the spectrum.

For both the Nylon-66 and the PVDF data, the parameter
points g, seem to be collected quite close to the critical
surface ofA, singularities. This may be due to the fact that
the present version of the MCT considers liquid and ideal
glass states and that the transition between them takes place
in an abrupt manner, manifested in the disappearance of the
a peak when crossing the surface from the liquid over to the
glassy side. In reality, the crossover between the liquid and
glassy states is observed to be smooth,dhmeak is present
on both sides, and no singular behavior can be seen. This can
be accounted for in the MCT by the inclusion of activated
hopping processes that serve to smooth out the sharpness of
the transition[33,34]. Consequently, some of the parameter
points that seem to be collected close to the critical surface
may in reality belong to the glassy side. 0

An A, evaluation of data from dielectric measurements on v[Hz]
the polymer gel system PAN-EC-PC has been presented
elsewherg 16]. Two representative spectra from this earlier
investigation are presented in Fig. 5 as an illustration of how
well the A, fits work in this case. The data from this system
show a typicalA, signature and the polynomial fits produce
very good results that are easily carried over to the
frequency-plane plots. The range of frequencies over which

there is agreement between theory and experiment is in this

case rather small, only about 2 decades. It may therefore be 3T ' '
argued that given the amount of fitting parameters, five in 10° 10’ 10°
this case fore”(v), it is not surprising that such good fits are v[Hz]

produced. It should however be noted that firstly, the MCT
higher-order scenarios predict very distinct and easily recogs
nizable susceptibility spectra. The, scenario can therefore
not be used to fit any arbitrary curve. Secondly, because |
the scaling properties according to E¢52) and (21), there ample 14 at 43°C. In Fig. 1, the coordinat@s §.) of these
are in reality only two parameters determining the shape oipectra are(—0.29,—i.8) and.&6.54,— 1.3) and theé];parameters

the entire curve, _Viz-gs andg,, see above. Once the shape are 0.12 and 0.14, respectively. Sample numbers are related to the
has been determined, the parametgrsgs, andg, are cal-  amount of EC and PC in the samples such that a higher number
culated according to corresponds to a smaller amount of these substances.

FIG. 5. MCT fits to the dielectric function of the system
N-EC-PC. Full lines ard, fits, see text(a) Complex-plane plot,

) real, and(c) imaginary part of the dielectric function plotted as
nctions of frequencyv. Circles, sample 8 at 35°C; squares,

g,==*5s%, decades. Similar to the PET data, one sanigf6 crystal-
linity at 100 °C) is found to lie very close to th#&; point in
03=5%03, Fig. 1. For illustrational purposes, ak, fit was therefore
also performed for this spectrum and, as seen in the figure,
04=5%04, the Az andA, functions provide in this case almost identical
results.
where the scaling parameteihas been defined above. De-  Since a number of the spectra from this dataset show
fined in this way, a variation of will only lead to contrac-  A;-like behavior, it has previously been evaluated within this
tion or expansion of the theoretical curve without changingscenario[11]. It was then found that some of the data fol-
its shape. The two remaining parametegsandt;, have no lowed a scaling line in thé parameter space and it could
influence on the shape of the curve but will only shift theindeed be shown that the scaling predictions of the theory
curve in the vertical or horizontal directions, respectively. were found to hold. In thé, case, there do exist parameter
In Fig. 6, data from measurements on PCTFE performegoints @,,93,9,) with similar p- andg-values, and a scaling
by Scottet al.[10] are shown together with their correspond- analysis can therefore be performed. The results from this
ing MCT fits. As for all the other polymers, th#, fits pro-  analysis are presented in Fig. 7. In these graphs the data
duce very good results with correspondence between theowrylearly show the predicted scaling behavior. Deviations from
and experiment over a frequency range between 6 and fhe master curves do occur because all the data do not ex-
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FIG. 6. MCT fits to the dielectric function of PCTFE. Full lines ~ FIG. 7. Rescaled dielectric function of PCTF&) Complex-
are A, fits and dashed lines fits to th&, scenario, see texta) plane plot,(b) real, and(c) imaginary part ofe plotted as functions
Complex-plane plotib) real, andc) imaginary part of the dielectric of_ u=—In(2mity)ly,. Full lines are the calculated master curves
function plotted as functions of frequeney Diamonds, 80% crys-  With p=0.32 andg=1.1x10"* according to Eq(22) for the com-
tallinity at 0 °C; circles, 44% crystallinity at 100 °C, squares, 73% g'(‘;; plante ”p_)lqtt ar:d 2E£_>q5(c-:14_) fortthdet frequlenCéOp())/lots. -I’;nlal'ngtlesyt

o 0 . : ~ o~ 6 crystallinity at— 25 °C; inverted triangles, 6 crystallinity a
g:)yesétar!:n;ryei[ g’ Z)Fiz(_iolr;;:)lg(}othseztz)ogg(g)n ’a;isdg"’{_’g"gs?_f ;[)h7e§)e 0 °C, squares, 12% crystallinity at 48 °C; circles, 44% crystallinity

and theg, parameters are 0.095, 0.14, and 0.12, respectively. at 50 °C; diamonds, 44% crystallinity at 75 °C.

actly follow the scaling line. The temperature dependence§tersc, andc; are determined independently froe and
8. According to Eq(17h), ¢}/, should exhibit a square root Satisfied to good accuracy. However, due to the lack of
dependence. This is shown in Figag in which a fit to Eq. pomts for temperature_s close 1, t_he use of a Ilnear func-
(17b) yields a critical temperaturg, of —91 °C. This value  tion: f(T)=(T—To), will produce fits of equal quality. The
of T, was used as a fixed value when performing the fits irscaling predictions can therefore not be completely verified
Figs. 8b) and 8c). The scattering of the points is, as dis- In this case. The fact that, in contrast to the linear fits, the
cussed above, due to that the parameter pajntsio not three fits using Eqs(17) are consistent, i.e., can t_>e per-
exactly follow the given scaling line. Similar results are ob-formed using the same paramelgy, makes it interesting to
tained for the other parametarsand 1§, as shown in Figs. |nvest|gate this open issue further by performing measure-
8(b) and &c). For these parameters it is possible to performments in the temperature range arotmy
a consistency check, since

V. SUMMARY AND CONCLUSIONS
1/4 ZCZ

(23) The dielectric spectra of polymers are often too compli-
mCy cated to be adequately described by phenomenological mod-
els such as the Havriliak-Negami function. As shown in the
as can be deduced from Ed.2) ands=|g,/3|**. The right- present work, as well as in earlier repofts1-16, the
most relation is especially interesting, since the two paramhigher-order mode-coupling scenarios, and especiallAthe

1l
3
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MCT predicts that close to a glass transition singularity the

a) relaxation spectra are independent of the microscopic fea-
0.06 tures of the material under study and are solely determined
o by the topological features of the parameter space. Accord-
35 004 ingly, any future theory for polymers developed out of the
MCT framework[35] will produce the same results as pre-
0.02 sented in this article, provided one can drive the system un-
der study sufficiently close to the relevant singularity.
thrvs xS 5 % Too One might expect it to be quite difficult to find several
T[°C] spectra along one particular scaling line in theparameter
0.25 2 space. In any case, large amounts of data may be needed in
order for a scaling analysis to be successful. The PCTFE data
0.2 1 K -
presented here nevertheless do contain a sufficient amount of
o 0159 spectra following such a scaling line and a scaling analysis
3 can therefore be performed. The fact that the scaling param-
0.1 eters extracted from this analysis show the expected tempera-
0.05] ture dependence provides additional support for the theory.
Because of the large amount of data needed, carrying out
0% 50 s 50 100 a MCT A, analysis of dielectric data for polymers is a labo-
T[°C] rious task. In order to cover different parts of thg (g3,94)
025 ) parameter space it is necessary to vary not just the tempera-
02 ture, but also other properties such as degree of crystallinity,
pressure, composition, water content, and so on. The data
av 015 analysis is facilitated considerably by utilizing the polyno-
= ol mial fits presented in this paper. Care must here be taken so
) that a wide enough frequency window is used in order to
0.05 cover as large a part of the minimum éi(v) as possible.
In experimental studies to date, only dielectric measure-
0% 50 0 50 100 ments have shown the existence of the higher-order MCT
T[C] glass transition singularities. It would be highly interesting to

investigate whether other experimental techniques would

FIG. 8. Scaling parameters extracted from the scaling plots irbroduce similar results, such as, e.g., light-scattering and

Fig. 7 versus temperaturé) c;, the full line is the best fit to Eq.
(17D yielding To=—-91°C. (b) c;, full line is the best fit to Eq.
(179 with To=-91°C. Circles,c, extracted from experimental
data; crosses;, calculated frome,=2c}|3/g,|* =, see text.(c)
1ly,, full line is the best fit to Eq(17¢) with To=—91°C. Circles,
1k, extracted from experimental data; squares, l¢alculated
from 1k,=|g./3|"¥% crosses, 3, calculated from W,
=2c,/mcy .

within this category especially photon correlation spectros-
copy, which has a dynamical window covering the frequency
range within which the higher-order MCT signatures are
present in the dielectric data. Here, the existence of low-
frequency artifacts due to free charges do not present a prob-
lem and it may therefore be possible to examine the low-
frequency behavior of the polymer spectra in greater detail.
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