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Mode-coupling theory and polynomial fitting functions: A complex-plane representation
of dielectric data on polymers
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SE-412 96 Go¨teborg, Sweden
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Recently, it has been shown that the higher-orderA3 andA4 scenarios of the mode-coupling theory~MCT!
are in many cases capable of providing a good description of the complicated dielectric spectra often encoun-
tered in polymeric systems. In this paper, more data from dielectric measurements on poly~ethylene tereph-
thalate!, poly~vinylidene fluoride!, Nylon-66, poly~chlorotrifluoroethylene! ~PCTFE!, and the polymer gel sys-
tem poly~acrylonitrile!–ethylene carbonate–propylene carbonate are evaluated within theA4 scenario of the
MCT. For all these systems, very good agreement is found between the theoretical and experimental spectra.
The data analysis is demonstrated to be facilitated considerably by plotting the data in the complex plane
whereby the elliptic functions derived from the theory for the frequency-dependent dielectric function can be
replaced by polynomials. For PCTFE, the scaling behavior predicted by the MCT could be verified and the
temperature dependences of the extracted scaling parameters were found to be consistent with theory.

DOI: 10.1103/PhysRevE.64.011802 PACS number~s!: 61.41.1e, 77.22.Gm, 64.70.Pf
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I. INTRODUCTION

Dielectric data obtained from measurements on polym
often show very complex relaxation patterns. The usual w
to analyze such data has to date been to use various s
empirical expressions, for instance, the Cole-Cole@1#, Cole-
Davidson @2,3#, or Havriliak-Negami@4# functions. These
expressions can account for features such as broadene
asymmetric loss peaks, typical for many simple gla
forming materials. In amorphous and semicrystalline po
mers, however, the frequency-dependent imaginary par
the dielectric function e9(n) often features frequency
independent regions, linear regions in ln(n), horizontal in-
flection points, or double minima@5–16#. In these cases, th
above formulas, in general, do not provide an adequate
scription of the data. Rather recently, however, this beha
has been demonstrated to be described astonishingly
using the higher-order scenarios within the mode-coup
theory ~MCT! of the liquid-glass transition@11–17#. How-
ever, even though the theoretical expressions do show g
correspondence with measured data, it has, due to the m
dimensional nature of the problem, not yet been possibl
thoroughly test the scaling relations predicted by the theo
Therefore, one purpose of this paper is to present more
supporting the theory, which also illustrates the scaling pr
erties. Furthermore, applying this theory to the analysis
frequency-domain data involves the use of elliptic functio
that cannot be calculated analytically. The ‘‘catastrophi
behavior of these functions, as well as their strong div
gence at low and high frequencies, makes it quite difficul
utilize automated curve fitting procedures. Due to this and
the large amount of data needed, analysis of data using
higher-order scenarios of the MCT has thus far been a q
cumbersome and tedious affair. Another purpose of this
per is therefore to present a simpler way to analyze dielec
data on polymers within the framework of the MCT, whic
allows for the use of simple polynomial functions and th
1063-651X/2001/64~1!/011802~10!/$20.00 64 0118
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permits linear least squares curve fitting to be utilized. F
this purpose, the following polymeric systems were chos
poly~ethylene terephthalate! ~PET!, poly~chlorotrifluoroeth-
ylene! ~PCTFE!, poly~vinylidene fluoride! ~PVDF!, poly-
~hexamethylene adipamide! ~Nylon-66!, and the polymer gel
system poly~acrylonitrile!–ethylene carbonate–propylen
carbonate~PAN-EC-PC!. The paper is organized as follow
In Sec. II a brief introduction to dielectric data analysis
presented, followed by a description of the mode-coupl
theory in Sec. III, where all relevant formulas and expre
sions are introduced. Results of the polynomial curve fits
shown in Sec. IV. In order to demonstrate the validity of t
polynomial fits, the dielectric spectra are also fitted to t
‘‘usual’’ elliptic functions using the parameters obtaine
from the polynomial fits. Finally, the paper is concluded
Sec. V with a discussion of the results.

II. PRESENTATION OF DIELECTRIC DATA

The data obtained from a dielectric experiment can
represented in a number of ways. Today, it is most comm
to plot the real and imaginary parts of the dielectric functi
e(n)5e8(n)2 ie9(n) as separate functions of the frequen
n. In such a plot the relaxations found in the material w
show up as peaks in the imaginary parte9, accompanied by
a step in the real parte8. Another method to present the da
is the Cole-Cole plot@1#. Here,e9 is plotted as a function of
e8 in a complex-plane representation. In the simplest the
@18,19#, where the relaxation function in the time domain
modeled by an exponential decay ande(n)}(1
1 i2pnt)21, such a plot will give rise to a semicircle cen
tered on the real axis. In reality, and especially in the cas
polymers, this is seldom seen but the semicircle appears
torted and is often not visible in its entirety.

III. MODE-COUPLING THEORY

During recent years, the mode-coupling theory@20# has
emerged as a very promising theoretical framework for
©2001 The American Physical Society02-1
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H. ELIASSON PHYSICAL REVIEW E 64 011802
scribing the dynamics of glass-forming systems. Tod
many experimental studies have confirmed the prediction
the theory for a large number of materials@21#. A central
concept in the MCT is that of glass transition singularitie
Due to the fact that the MCT equations cannot be sol
exactly, approximations are employed, either through the
of so-called schematic models or by asymptotic expansio
In the present case, the latter method has been adopted
plying that the equations presented below are only applica
close to the relevant singularity and in an intermediate
quency range called theb-relaxation region, located betwee
the structurala-relaxation and higher-frequency microscop
processes. The theory predicts a critical temperatureTc ,
which represents a transition from liquidlike dynamical b
havior for T.Tc to solidlike behavior forT<Tc . Because
of the asymptotic nature of the solutions to the MCT eq
tions, the abovementioned singularities manifest themse
in a number of different scenarios and are classified acc
ing to results from catastrophe theory@22,23#. In the simplest
case, theA2 scenario, the imaginary part of the dielectr
function is in theb-relaxation region aboveTc given by a
minimum centered at (nmin ,emin9 ), which is formed by two
power laws according to

e9~n!5
emin9

a1b FbS n

nmin
D a

1aS nmin

n D bG ~1!

and whose exponentsa and2b are related to each other an
to a material-dependent exponent parameterl according to

l5
G2~12a!

G~122a!
5

G2~11b!

G~112b!
, ~2!

whereG(x) is the gamma function. For temperatures bel
Tc , the power law with exponent2b is replaced by a white-
noise spectrum,e9(n)}n1.

A. Higher-order scenarios and elliptic functions

For many polymers, theA2 scenario cannot adequate
explain the very complex relaxation patterns encounte
sometimes. Furthermore, the MCT predicts theA2 scenario
to break down whenl approaches unity. When this happen
higher-order scenarios must be used. For these, the ge
expressions for the real and imaginary parts of the dielec
function can be written in leading order as

e8~n!5 f e2ecf ~y;g2 ,g3 , . . . ,gk!, ~3a!

e9~n!52
p

2
ecf 8~y;g2 ,g3 , . . . ,gk!, ~3b!

where y52 ln(2pnt1), f e and ec are fitting parameters
f 8(y)5d f /dy, and t1 is a characteristic microscopic time
scale @11,12#. The parametersgl (l 52,3, . . . ) aremath-
ematical control parameters and specify the distance to
relevant singularity in such a way that the singularity
reached wheng25g35•••5gk50. These parameters con
trol the shape of the dielectric function. The functionf (y) is
determined from the differential equation@17#
01180
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2

5Sk„f ~y!… ~4!

wherek>3 andSk(x) is a polynomial given by

Sk~x!5
4

~k22!2
xk2g2xk222•••2gk21x2gk . ~5!

The solutions to these equations are expressed in term
elliptic functions. In case of theA3 singularity, for whichk
53, the functionf (y) is given by the Weierstrass ellipti
function`(y;g2 ,g3) @11,17#, which can be calculated via th
elliptic integral

y5 È` ds

A4s32g2s2g3

. ~6!

There are thus two shape parameters,g2 andg3, in this case.
The next higher-order scenario, theA4 scenario@12# has
three shape parameters,g2 , g3, andg4, and the functionf (y)
can be calculated through

y5E
f

` ds

As42g2s22g3s2g4

. ~7!

In the frequency domain, all these higher-order scena
provide their own very specific signatures. For instance,
A3 scenario introduces a horizontal inflection point ine9(n),
while the A4 scenario in addition exhibits, e.g., doub
minima and regions linear in ln(n). For all higher-order sin-
gularitiesAk , k>3, lower-order singularities appear as sp
cial limits, determined by the number of degenerate roots
the polynomialSk(x). The A2 singularities are encountere
when two degenerate roots are found, while the set ofA3
singularities is found for all cases where the polynom
Sk(x) has three coalescent roots and so on.

B. Parameter spaces

By considering the control parametersgl , l
52,3, . . . ,k, to be coordinates in a (k21)-dimensional
space, each measured spectrum will correspond to a poi
this space. When varying physical parameters such as,
temperature, pressure, or composition, the set of points
acquired will form a path. This path may cross critical lin
or surfaces containing theA2 singularities. If that happens,
transition is predicted to take place between a liquid st
and an ideal glass state~the transition takes place at the tem
peratureT5Tc) or, as could be the case for theA4 and
higher scenarios, between two ideal glass states. Since th
of A2 singularities is determined by establishing for whi
values of the parametersgl the polynomialSk(x) has roots
of twofold degeneracy@22,23#, the critical lines or surfaces
can be determined through the identities

S3~x!54x32g2x2g35~x2x0,3!
2~x2x1,3!50 ~8a!

for the A3 scenario and
2-2



-

-

o

et

ng

fo

e in-
at

l
pre-

y is

ence.
y

e-
eters
on
he

MODE-COUPLING THEORY AND POLYNOMIAL FITTING . . . PHYSICAL REVIEW E 64 011802
S4~x!5x42g2x22g3x2g45~x2x0,4!
2~x2x1,4!~x2x2,4!

50 ~8b!

for the A4 scenario. Here,$xl ,k% are the roots of the polyno
mial Sk(x). By identification, the critical line~in theA3 case!
or surface~for the A4 scenario! are then given by the para
metric representations

g2512x0
2 , ~9a!

g3528x0
3 ~9b!

for the A3 case, wherex0P@0,̀ ) and

g25~x01x1!212x0
2 , ~10a!

g3522x0~x01x1!2, ~10b!

g45x0
2x1~2x01x1! ~10c!

for the A4 scenario. These last three relations may be m
conveniently expressed as

g3522x0~g222x0
2!, ~10d!

g45x0
2~g223x0

2! ~10e!

for g2P(2`,`) and x0P$(2`,2Ag2/2#,@Ag2/6,`)%, for
g2>0 andx0P(2`,`) otherwise. In the same way, the s
of A3 singularities will in theA4 case be given by a line in
the (g2 ,g3 ,g4) parameter space described by the followi
parametric functions:

g256x0
2 , ~11a!

g3528x0
3 , ~11b!

g453x0
4 , ~11c!

wherex0P@0,̀ ).

C. Scaling relations

The elliptic functions f (y;g2 ,g3 , . . . ,gk) are homoge-
neous, i.e., they can be rescaled according to@11,12#

f ~y;g2 ,g3 , . . . ,gk!5snf ~ys;g2s22n,g3s23n, . . . ,gks
2kn!,

~12!

wheren52/(k22). As a consequence, the expressions
the dielectric function in theA3 and A4 scenarios can, by
letting s5ug3/4u1/6 in the A3 case@11# and s5ug4/3u1/4 for
the A4 singularity @16,27#, alternatively be written as

e8~n!5 f e2cj8`S y

yj
;612S r

4D 1/3

,64D , ~13a!

e9~n!52cj9`8S y

yj
;612S r

4D 1/3

,64D ~13b!

for the A3 singularity @11# and as
01180
re

r

e8~n!5 f e2c48 f S y

y4
;66p1/2,68q1/4,63D , ~14a!

e9~n!52c49 f 8S y

y4
;66p1/2,68q1/4,63D ~14b!

in the A4 scenario. The parametersr, p, andq will then be
given by

r 5U g2
3

27g3
2U , ~15a!

p5U g2
2

12g4
U, ~15b!

q5U 27g3
4

4096g4
3U . ~15c!

There will thus exist lines in the (k21)-dimensional pa-
rameter space along which the corresponding spectra ar
variant. The parameters above have been defined so thr
51 is the equation of theA2 line in theA3 scenario, while
p5q51 corresponds to theA3 line in the three-dimensiona
A4 parameter space. This scaling property leads to the
diction that the parameters in Eqs.~13! and~14! should have
the following temperature dependences:

cj8

ec
}UT02T

T0
U1/3

, ~16a!

cj9

ec
}UT02T

T0
U1/2

, ~16b!

1

yj
}UT02T

T0
U1/6

, ~16c!

c48

ec
}UT02T

T0
U1/4

, ~17a!

c49

ec
}UT02T

T0
U1/2

, ~17b!

1

y4
}UT02T

T0
U1/4

. ~17c!

T0 is here the temperature at which the relevant singularit
reached. Thus for spectra having similarr values~for theA3
case! or p, q values~for the A4 case!, the extracted scaling
parameters should show the above temperature depend
This provides for a critical testing of the theory. In man
cases, the parameterec only shows a weak temperature d
pendence and is therefore usually absorbed by the param
c8 andc9. However, when performing a scaling analysis
polymers with, e.g., varying degree of crystallinity where t
2-3
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intensities of the spectra vary to a much greater extent
tween samples, the influence ofec needs to be taken into
account.

D. Polynomial representation ofe8 and e9

Due to the nature of the above described elliptic fun
tions, automatic curve fitting procedures are very difficult
implement for the higher-order MCT scenarios. A differe
route can be taken by observing thate9 is related to the
derivative of the functionf (y) @13#. From Eqs.~3! and ~4!
one then finds thate9 is related toe8 through the polynomial
expression

e925(
i 50

k

aie8 i ~18!

from which the various parameters from Eq.~3! can be ex-
tracted according to

ec52
p2

a3
, ~19a!

f e52
a2

3a3
, ~19b!

g25
4a2

2212a1a3

3p4
, ~19c!

g35
36a1a2a328a2

32108a0a3
2

27p6
~19d!

for the A3 case (k53) and

ec5
p

2a4
1/2

, ~20a!

f e52
a3

4a4
, ~20b!

g25
3a3

228a2a4

2a4p2
, ~20c!

g35
8a1a4

21a3
324a2a3a4

a4
3/2p3

, ~20d!

g45
64a1a3a4

2216a2a3
2a42256a0a4

313a3
4

16a4
2p4

~20e!

for the A4 singularity (k54). In this way, all parameter
except the timescalet1 can be determined by fitting a poly
nomial of orderk to a plot of e92 versuse8. It is however
important to realize that the accuracy of the MCT expr
sions for the dielectric function depends on the distance
the relevant singularity. This means that even though a v
good fit is obtained with the polynomial expression, this
01180
e-

-

t

-
to
ry

not necessarily carried over to the elliptic functions descr
ing the real and imaginary parts, respectively. One of
purposes of this paper is to investigate in more detail
correspondence between the polynomial fits on the one h
and the elliptic functions on the other.

It should be noted that theai parameters cannot be chose
arbitrarily since, e.g., a negative value of the parametera4
yields imaginary coefficientsec andg3 in the A4 case.

According to Eq.~12!, the scaling relation for theSk(x)
polynomial is given by

Sk~x;g2 ,g3 , . . . ,gk!

5sknSk~xs2n;g2s22n,g3s23n, . . . ,gks
2kn!.

~21!

For theA4 scenario, which is the primary scenario of intere
in the present work, the master functions along scaling li
given by constantp and q values do consequently have th
following form:

e9

c49
5AS4S f e2e8

c48
;66p1/2,68q1/4,63D

5AS f e2e8

c48
D 4

76p1/2S f e2e8

c48
D 2

78q1/4
f e2e8

c48
73.

~22!

IV. RESULTS

The part of theA4 parameter space relevant for th
present case is shown in Fig. 1. The points represent
positions of the different fitted spectra within this space. B
cause of Eq.~21! and by choosings5ug2u1/2 so that g̃3

5g3 /ug2u3/2 and g̃45g4 /ug2u2, this three-dimensional spac
is completely characterized by the three cuts with the pla

FIG. 1. Cut of theA4 parameter space with the planeg̃251, see
text. Black diamonds, PAN-EC-PC; pluses, PET; triangles, PCT
circles, Nylon-66; squares, PVDF. Crosses mark the spectra tha
plotted in the following figures. The dashed circle shows the lo

tion of the A3 point, located at (g3̃,g4̃)5„2(2/3)3/2,1/12… and the
dashed line contains all parameter points that give rise to a hori
tal inflection point in the polynomialS4(x). The numbers 0, 2, and
4 indicate the number of real roots of the polynomialS4 in the
relevant region.
2-4
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g2521, g250, andg251. Since all theg2 parameters ob-
tained from the fits were positive, only the cut with theg2
51 plane needs to be considered in the present case. Th
lines are the sets of allA2 singularities, calculated accordin
to Eqs. ~10d! and ~10e!, and do thus represent crossove
between different ideal glass states and between liquid
ideal glass states. The line starting from theA3 point and
extending downwards and to the right is divided into tw
parts. The upper part, between theA3 point and the corner
represents a glass-glass transition. The lower line repres
a liquid-glass transition. The other line, starting from t
corner and extending towards the lower left, represents
transition surface between liquid and ideal glass states.
dotted part of the critical surface, drawn to show the f
‘‘swallowtail’’ shape, represents an unphysical situati
@12#. The dashed straight line that extends from theA3 point
and downwards contains the set of parameter points that
duce a horizontal inflection point in the polynomialS4. Some
parameter points in the figure are marked with a cross. Th
represent typical results and the spectra correspondin
these points are plotted in the following figures.

PET is a polymer with a dielectric spectrum that shows
almostA2-like behavior in the amorphous state close to
critical temperatureTc . Discrepancies between theA2 sce-
nario and experimental data for this polymer have howe
been found@14,24# and the reason for this deviation wa
explained by taking theA3 singularity into account@14#. Di-
electric data on PET with varying degree of crystallin
were also evaluated within theA3 scenario with partial suc
cess@15#. These data have now been reevaluated within
A4 scenario, the result of which is shown in Fig. 2 for a fe
representative spectra. The complex-plane analysis prod
excellent fits that are easily carried over to the frequen
plane plots. It should be pointed out that for all the evalua
data, except when otherwise noted, the fitting parame
were obtained from fits using expressions~18!, ~19!, and~20!
and these parameters were then used to generate the e
functions in Eqs.~3!. These plots also illustrate the fact th
close to theA3 points, as seen in Fig. 1, theA3 and A4
scenarios are equivalent. However, further away from theA3
points deviations start to appear and theA4 scenario provides
a much better description of the data. In contrast with theA2
scenario, which exclusively deals with the minimum b
tween two peaks, the higher-order scenarios are also ab
reproduce a large part of thea peak. This is due to the fac
that the time-domain relaxation function for the higher-ord
scenarios is more slowly varying compared to theA2 sce-
nario and a larger part of thea peak will therefore be repro
duced in these cases. Of particular interest is the fact tha
a peak of the PET spectrum is not fitted to the lo
frequency wing of theA4 fitting curve but rather to the
intermediate-frequency peak situated between the
minima as found in the liquid region beneath the corner
Fig. 1. This gives the result, as can be seen in Fig. 2,
another peak is predicted for frequencies below thea peak.
On crossing the bifurcation surface extending from the c
ner towards the lower left in Fig. 1, this low-frequency pe
will disappear. Thea peak will however remain intact an
will instead disappear when crossing the critical surfa
01180
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making up the left part of the ‘‘swallowtail’’ shape. Thi
implies, as previously discussed by Fuchset al. @26#, a two-
step glass transition scenario. For dielectric measureme
this prediction might be difficult to corroborate, since for lo
enough frequenciese9 will start to increase due to electrod
polarization and dc conductivity. The low-frequency peak,
a8 peak, is actually found in dielectric spectra for, e.g., po
~propylene glycol! @25#. Using a schematic model, it has pr
viously been shown by Fuchset al. @26# that this double-
peak scenario is indeed a generic feature of the MCT
appears close to the self-intersection of the critical surfa
Thus, spectra located below and close to the corner w
coordinates (g3̃,g4̃)5(0,21/4) in Fig. 1 will display such a
double peak, or more accurately, a double minimum, si

FIG. 2. MCT fits to the dielectric function for PET. Full line
are A4 fits and dashed lines fits to theA3 scenario, see text.~a!
Complex-plane plot.~b! Real and~c! imaginary part of the dielec-
tric function as functions of frequencyn. Circles, 9% crystallinity at
90 °C; diamonds, 26% crystallinity at 110 °C; squares, 31% cr

tallinity at 115 °C. In Fig. 1, the coordinates (g̃3 ,g̃4) of these spec-
tra are (20.39,6.731024), (20.15,20.44), and (20.55,20.91)
and theg2 parameters are 0.22, 0.047, and 0.022, respectively.
2-5
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H. ELIASSON PHYSICAL REVIEW E 64 011802
only the high-frequency part of the lowest-frequency pea
visible due to the asymptotic nature of theA4 scenario.

Figure 3 shows the results from fitting theA4 functions to
dielectric data taken from measurements on Nylon-66@27#.
Here theA4 fits also produce very good results. However,
the low temperature sample the complex-plane fit produ
parameter values that corresponded to a point on the r
side of the rightmost critical line in Fig. 1. Attempting t
produce an elliptic function that fitted the spectrum for t
parameter values obtained from the polynomial fits did the
fore not succeed in this case. This is due to the fact that th
are not enough data on the high-frequency side of the s
trum that gives, as a result, a polynomial ine8 that will
become negative and thereby exhibit two real roots. By
sual inspection of the experimental spectra, one can how
immediately conclude that this spectrum belongs to that
of the parameter space where the polynomialS4(x) has no
real roots, since spectra in this region show an intermed
frequency peak or inflection point as well as the hig

FIG. 3. MCT fits to the dielectric function for Nylon-66. Fu
lines areA4 fits, see text.~a! Complex-plane plot,~b! real, and~c!
imaginary part of the dielectric function plotted as functions
frequencyn. Squares, 47 °C; circles, 98 °C. In Fig. 1, the coor

nates (g̃3 ,g̃4) of these spectra are (0.25,20.44) and (0.11,20.34)
and theg2 parameters are 0.082 and 0.12, respectively.
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frequency side of a lower-frequency peak. By extrapolat
the data in Fig. 3~a! with a few points at low values ofe8, a
successful polynomial fit was also accomplished for t
case.

Like Nylon-66, dielectric data for PVDF also show typ
cal A4 behavior with a double minimum. The data shown
Fig. 4 were taken from the literature@28#. e8(n) was not
available from that report and was therefore calculated
performing a numerical Kramers-Kronig transformation a
cording to a method developed by Lovell@29#. Apart from a
wide frequency range, such an analysis requires that
value ofe8 at infinitely high frequencies,e` , be determined.
Since this value is very dependent upon the degree of c
tallinity and thermal history of the sample, a correct asse
ment of this parameter could not be made, and a reason
estimate was determined to bee`55 @30–32#. Sincee` is
just an additive constant, it will only affect the value off e
when performingA4 fits. The lowest temperature sample w
also in this case giving problems for the complex plane
and, just as for the nylon sample, this was remedied by

f

FIG. 4. MCT fits to the dielectric function of PVDF. Full line
areA4 fits, see text.~a! Complex-plane plot,~b! real, and~c! imagi-
nary part of the dielectric function plotted as functions of frequen

n. Circles, 0 °C; squares, 10 °C. In Fig. 1, the coordinates (g̃3 ,g̃4)
of these spectra are (0.083,20.31) and (0.065,20.30) and theg2

parameters are 0.12 and 0.14, respectively.
2-6
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trapolating the spectrum somewhat at both high and low
ues ofe8. The fits could have been improved for high fr
quencies if more data were available. In order to perform
successful fit, it is crucial to have measured the entire m
mum in the spectrum.

For both the Nylon-66 and the PVDF data, the parame
points gl seem to be collected quite close to the critic
surface ofA2 singularities. This may be due to the fact th
the present version of the MCT considers liquid and id
glass states and that the transition between them takes
in an abrupt manner, manifested in the disappearance o
a peak when crossing the surface from the liquid over to
glassy side. In reality, the crossover between the liquid
glassy states is observed to be smooth, thea peak is presen
on both sides, and no singular behavior can be seen. This
be accounted for in the MCT by the inclusion of activat
hopping processes that serve to smooth out the sharpne
the transition@33,34#. Consequently, some of the parame
points that seem to be collected close to the critical surf
may in reality belong to the glassy side.

An A4 evaluation of data from dielectric measurements
the polymer gel system PAN-EC-PC has been prese
elsewhere@16#. Two representative spectra from this earl
investigation are presented in Fig. 5 as an illustration of h
well the A4 fits work in this case. The data from this syste
show a typicalA4 signature and the polynomial fits produc
very good results that are easily carried over to
frequency-plane plots. The range of frequencies over wh
there is agreement between theory and experiment is in
case rather small, only about 2 decades. It may therefor
argued that given the amount of fitting parameters, five
this case fore9(n), it is not surprising that such good fits a
produced. It should however be noted that firstly, the M
higher-order scenarios predict very distinct and easily rec
nizable susceptibility spectra. TheA4 scenario can therefor
not be used to fit any arbitrary curve. Secondly, becaus
the scaling properties according to Eqs.~12! and ~21!, there
are in reality only two parameters determining the shape
the entire curve, viz.,g̃3 and g̃4, see above. Once the sha
has been determined, the parametersg2 , g3, andg4 are cal-
culated according to

g256s2,

g35s3g̃3 ,

g45s4g̃4 ,

where the scaling parameters has been defined above. D
fined in this way, a variation ofs will only lead to contrac-
tion or expansion of the theoretical curve without chang
its shape. The two remaining parameters,ec and t1, have no
influence on the shape of the curve but will only shift t
curve in the vertical or horizontal directions, respectively

In Fig. 6, data from measurements on PCTFE perform
by Scottet al. @10# are shown together with their correspon
ing MCT fits. As for all the other polymers, theA4 fits pro-
duce very good results with correspondence between th
and experiment over a frequency range between 6 an
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decades. Similar to the PET data, one sample~44% crystal-
linity at 100 °C) is found to lie very close to theA3 point in
Fig. 1. For illustrational purposes, anA3 fit was therefore
also performed for this spectrum and, as seen in the fig
theA3 andA4 functions provide in this case almost identic
results.

Since a number of the spectra from this dataset sh
A3-like behavior, it has previously been evaluated within th
scenario@11#. It was then found that some of the data fo
lowed a scaling line in theA3 parameter space and it cou
indeed be shown that the scaling predictions of the the
were found to hold. In theA4 case, there do exist paramet
points (g2 ,g3 ,g4) with similar p- andq-values, and a scaling
analysis can therefore be performed. The results from
analysis are presented in Fig. 7. In these graphs the
clearly show the predicted scaling behavior. Deviations fr
the master curves do occur because all the data do no

FIG. 5. MCT fits to the dielectric function of the system
PAN-EC-PC. Full lines areA4 fits, see text.~a! Complex-plane plot,
~b! real, and~c! imaginary part of the dielectric function plotted a
functions of frequencyn. Circles, sample 8 at 35 °C; square

sample 14 at 43 °C. In Fig. 1, the coordinates (g̃3 ,g̃4) of these
spectra are (20.29,21.8) and (20.54,21.3) and theg2 parameters
are 0.12 and 0.14, respectively. Sample numbers are related t
amount of EC and PC in the samples such that a higher num
corresponds to a smaller amount of these substances.
2-7
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actly follow the scaling line. The temperature dependen
of the scaling parametersc48 , c49 , and 1/y4 are shown in Fig.
8. According to Eq.~17b!, c49/ec should exhibit a square roo
dependence. This is shown in Fig. 8~a!, in which a fit to Eq.
~17b! yields a critical temperatureT0 of 291 °C. This value
of T0 was used as a fixed value when performing the fits
Figs. 8~b! and 8~c!. The scattering of the points is, as di
cussed above, due to that the parameter pointsgl do not
exactly follow the given scaling line. Similar results are o
tained for the other parametersc48 and 1/y4, as shown in Figs.
8~b! and 8~c!. For these parameters it is possible to perfo
a consistency check, since

1

y4
5Ug4

3 U1/4

5
2c49

pc48
~23!

as can be deduced from Eq.~12! ands5ug4/3u1/4. The right-
most relation is especially interesting, since the two para

FIG. 6. MCT fits to the dielectric function of PCTFE. Full line
are A4 fits and dashed lines fits to theA3 scenario, see text.~a!
Complex-plane plot,~b! real, and~c! imaginary part of the dielectric
function plotted as functions of frequencyn. Diamonds, 80% crys-
tallinity at 0 °C; circles, 44% crystallinity at 100 °C, squares, 73

crystallinity at 175 °C. In Fig. 1#, the coordinates (g̃3 ,g̃4) of these
spectra are (20.012,20.27), (20.52,0.069), and (20.68,20.78)
and theg2 parameters are 0.095, 0.14, and 0.12, respectively.
01180
s

n

-

-

etersc48 and c49 are determined independently frome8 and
e9, respectively. As shown in the figures, these relations
satisfied to good accuracy. However, due to the lack
points for temperatures close toT0, the use of a linear func-
tion, f (T)}(T2T0), will produce fits of equal quality. The
scaling predictions can therefore not be completely verifi
in this case. The fact that, in contrast to the linear fits,
three fits using Eqs.~17! are consistent, i.e., can be pe
formed using the same parameterT0, makes it interesting to
investigate this open issue further by performing measu
ments in the temperature range aroundT0.

V. SUMMARY AND CONCLUSIONS

The dielectric spectra of polymers are often too comp
cated to be adequately described by phenomenological m
els such as the Havriliak-Negami function. As shown in t
present work, as well as in earlier reports@11–16#, the
higher-order mode-coupling scenarios, and especially theA4

FIG. 7. Rescaled dielectric function of PCTFE.~a! Complex-
plane plot,~b! real, and~c! imaginary part ofe plotted as functions
of u52 ln(2pnt1)/y4. Full lines are the calculated master curv
with p50.32 andq51.131028 according to Eq.~22! for the com-
plex plane plot and Eqs.~14! for the frequency plots. Triangles
80% crystallinity at225 °C; inverted triangles, 80% crystallinity a
0 °C, squares, 12% crystallinity at 48 °C; circles, 44% crystallin
at 50 °C; diamonds, 44% crystallinity at 75 °C.
2-8
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scenario, are capable of providing a very good description
this type of data. Since the present version of the MCT
derived from a simple monatomic fluid, it may be argued t
the theory is not applicable to such complicated system
polymers. It is however important to understand that

FIG. 8. Scaling parameters extracted from the scaling plot
Fig. 7 versus temperature.~a! c49 , the full line is the best fit to Eq.
~17b! yielding T05291 °C. ~b! c48 , full line is the best fit to Eq.
~17a! with T05291 °C. Circles,c48 extracted from experimenta
data; crosses,c48 calculated fromc4852c49u3/g4u1/4/p, see text.~c!
1/y4, full line is the best fit to Eq.~17c! with T05291 °C. Circles,
1/y4 extracted from experimental data; squares, 1/y4 calculated
from 1/y45ug4/3u1/4; crosses, 1/y4 calculated from 1/y4

52c49/pc48 .
m

01180
of
s
t
as
e

MCT predicts that close to a glass transition singularity
relaxation spectra are independent of the microscopic
tures of the material under study and are solely determi
by the topological features of the parameter space. Acco
ingly, any future theory for polymers developed out of t
MCT framework@35# will produce the same results as pr
sented in this article, provided one can drive the system
der study sufficiently close to the relevant singularity.

One might expect it to be quite difficult to find sever
spectra along one particular scaling line in theA4 parameter
space. In any case, large amounts of data may be need
order for a scaling analysis to be successful. The PCTFE
presented here nevertheless do contain a sufficient amou
spectra following such a scaling line and a scaling analy
can therefore be performed. The fact that the scaling par
eters extracted from this analysis show the expected temp
ture dependence provides additional support for the theo

Because of the large amount of data needed, carrying
a MCT A4 analysis of dielectric data for polymers is a lab
rious task. In order to cover different parts of the (g2 ,g3 ,g4)
parameter space it is necessary to vary not just the temp
ture, but also other properties such as degree of crystallin
pressure, composition, water content, and so on. The
analysis is facilitated considerably by utilizing the polyn
mial fits presented in this paper. Care must here be take
that a wide enough frequency window is used in order
cover as large a part of the minimum ine9(n) as possible.

In experimental studies to date, only dielectric measu
ments have shown the existence of the higher-order M
glass transition singularities. It would be highly interesting
investigate whether other experimental techniques wo
produce similar results, such as, e.g., light-scattering
within this category especially photon correlation spectr
copy, which has a dynamical window covering the frequen
range within which the higher-order MCT signatures a
present in the dielectric data. Here, the existence of lo
frequency artifacts due to free charges do not present a p
lem and it may therefore be possible to examine the lo
frequency behavior of the polymer spectra in greater det
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